Comparative studies in the ¹⁹F and ¹H NMR chemical shifts in 2,2-difluorohalogenated propanes T. Tanuma *, K. Ohnishi, H. Okamoto, S. Morikawa Research Center, Asahi Glass Co., 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa 221, Japan Received 4 April 1995; accepted 22 August 1995 #### Abstract Fluorine-19 chemical shifts were compared with ${}^{1}H$ chemical shifts in CF_3 – CF_2 –R versus CH_3 – CF_2 –R, CF_2 Cl– CF_2 –R versus CH_2 – CF_2 –R and CFCl₂– CF_2 –R versus CHCl₂– CF_2 –R, where R is a substituted methyl group containing all combinations of H, Cl and F. A good linear relationship was found between the ${}^{19}F$ and ${}^{1}H$ NMR chemical shifts. Conformational analysis using MNDO calculations was applied to the CF_3 – CF_2 –R and CH_3 – CF_2 –R series to clarify the interaction between the terminal substituents. In halogenated propanes, ${}^{19}F$ and ${}^{1}H$ chemical shifts are mainly affected by the through-space interaction between the terminal substituents rather than the electronegativity. Keywords: NMR spectroscopy; Mass spectrometry; Difluorohalogenated propanes; MNDO calculations; Through-space interaction ## 1. Introduction We reported [1,2] the correlation between ¹⁹F NMR chemical shifts and the molecular structures of halogenated propanes by conformational analysis using MNDO calculations. Although a large number of studies have been made on ¹⁹F and ¹H NMR spectroscopic data respectively, no studies have ever tried to compare ¹⁹F chemical shifts with ¹H chemical shifts systematically. We have made an investigation into the relationship between ¹⁹F and ¹H NMR chemical shifts in 2,2-difluorohalogenated propanes. Proton chemicals shifts were compared with ¹⁹F NMR chemical shifts in CF₃-CF₂-R versus CH₃-CF₂-R, CF₂Cl-CF₂-R versus CH₂Cl-CF₂-R and CFCl₂-CF₂-R versus CHCl₂-CF₂-R, where R is a substituted methyl group containing all combinations of H, Cl and F. # 2. Results and discussion We have examined the ¹⁹F NMR chemical shifts of trifluoromethyl groups and ¹H NMR chemical shifts of methyl groups. Table 1 shows a comparison of the ¹⁹F chemical shifts in decreasing order of magnitude of trifluoromethyl groups in halogenated propane and ethanes. The order of substituent is completely different in both cases. We reported [1,2] the Table 1 ¹⁹F chemical shift ^a of CF₃ group in CF₃–CF₂–R and CF₃–R | R | CF ₃ -CF ₂ -R | R | CF ₃ –R | |--------------------|-------------------------------------|--------------------|--------------------| | CH ₃ | -87.2 | CF ₃ | -88.2 | | CH ₂ F | -84.5 | CCIF ₂ | -86.7 | | CH ₂ Cl | -84.1 | CHF ₂ | -86.2 | | CHF ₂ | -83.0 | CCl ₂ F | -84.1 | | CF ₃ | -82.8 | CHCIF | -82.3 | | CHCIF | -81.9 | CCl ₃ | -82.2 | | CCIF ₂ | -80.9 | CHCl ₂ | -78.5 | | CHCl ₂ | -80.1 | CH ₂ F | -78.5 | | CCl ₂ F | -78.1 | CH₂Cl | -72.1 | | CCl ₃ | -75.6 | CH ₃ | -65.0 | ^a δ_F (ppm) from CCl₃F. reasons for this difference as follows. In halogenated propanes the ¹⁹F chemical shift of the trifluoromethyl group is mainly affected by the steric interaction with the terminal substituent. In contrast, the paramagnetic component of the neighboring atoms is responsible for the ¹⁹F chemical shift of the trifluoromethyl group in halogenated ethanes. A comparison of the ¹H NMR chemical shifts of the methyl groups in halogenated propanes and ethanes is given in Table 2. In contrast with the case of the trifluoromethyl group, there is very little difference between the substituent order for halogenated propanes and ethanes. It appears that the bulkier the substituent, the larger the chemical shift. If additivity of the atoms in R is assumed, interesting results are obtained. Thus, ^{*} Corresponding author. Table 2 ¹H chemical shift ^a of CH₃ group in CH₃-CF₂-R and CH₃-R | R | CH ₃ -CF ₂ -R | R | CH ₃ -R | |--------------------|-------------------------------------|--------------------|--------------------| | CH ₃ | 1.61 | CH ₃ | 0.88 в | | CHF ₂ | 1.67 | CH₂F | 1.35 | | CH₂F | 1.69 | CH ₂ Cl | 1.48 | | CH ₂ Cl | 1.74 | CHF ₂ | 1.55 | | CHCIF | 1.78 | CHCIF | 1.86 | | CF ₃ | 1.79 | CF ₃ | 1.87 | | CCIF ₂ | 1.83 | CHCl₂ | 2.06 | | CHCl ₂ | 1.85 | CCIF ₂ | 2.16 | | CCl ₂ F | 1.94 | CCl₂F | 2.46 | | CCI ₃ | 2.04 | CCl ₃ | 2.73 | ^a $\delta_{\rm H}$ (ppm) from TMS. Table 3 Observed and calculated ¹H chemical shifts ^a of CH₃ group in halogenated propanes and ethanes | R | CH ₃ -CF ₂ -R | | CH ₃ -R | | |--------------------|-------------------------------------|-------|--------------------|-------| | | Obs. | Calc. | Obs. | Calc. | | CH ₃ | 1.61 | 1.60 | 0.88 b | 0.91 | | CHF ₂ | 1.67 | 1.71 | 1.35 | 1.57 | | CH ₂ F | 1.69 | 1.66 | 1.48 | 1.24 | | CH ₂ Cl | 1.74 | 1.74 | 1.55 | 1.51 | | CHCIF | 1.78 | 1.79 | 1.86 | 1.84 | | CF ₃ | 1.79 | 1.76 | 1.87 | 1.90 | | CCIF ₂ | 1.83 | 1.85 | 2.06 | 2.17 | | CHCl ₂ | 1.85 | 1.88 | 2.16 | 2.11 | | CCl ₂ F | 1.94 | 1.93 | 2.46 | 2.44 | | CCl ₃ | 2.04 | 2.02 | 2.73 | 2.71 | | r | 0.981 | | 0.9 | 996 | | rms error | 0.0736 | | 0.137 | | ^a δ_H (ppm) from TMS. Table 4 Observed ^{19}F and ^{1}H chemical shifts a of CF_{3} and CH_{3} groups in $CF_{3}CF_{2}$ – CXYZ and $CH_{3}CF_{2}$ –CXYZ and the average number of atoms in X, Y positions of $CF_{3}CF_{2}$ –CXYZ and $CH_{3}CF_{2}$ –CXYZ as depicted in Fig. 2 | | CF_3
$\delta_F (ppm)$ | CH ₃
δ _H (ppm) | Average number of atoms in X and Y positions | | | | | | |--------------------|----------------------------|---|--|-------|---------------------------------------|-------|-------|-------| | | | | CF ₃ CF ₂ -CXYZ | | CH ₃ CF ₂ -CXYZ | | YZ | | | | | | Н | F | Cl | Н | F | Cl | | CCl ₃ | -75.6 | 2.04 | | | 2.000 | | | 2.000 | | CCl ₂ F | -78.1 | 1.94 | | 0.916 | 1.084 | | 0.197 | 1.803 | | CHCl ₂ | -80.1 | 1.85 | 0.929 | | 1.071 | 0.408 | | 1.592 | | CClF ₂ | -80.9 | 1.83 | | 1.619 | 0.381 | | 1.051 | 0.949 | | CHCIF | -81.9 | 1.79 | 0.867 | 0.809 | 0.324 | 0.650 | 0.414 | 0.936 | | CF ₃ | -82.8 | 1.78 | | 2.000 | | | 2.000 | | | CHF ₂ | -83.0 | 1.74 | 0.760 | 1.240 | | 0.727 | 1.273 | | | CH ₂ Cl | -84.1 | 1.69 | 1.751 | | 0.249 | 1.168 | | 0.831 | | CH ₂ F | -84.5 | 1.67 | 1.442 | 0.558 | | 1.489 | 0.511 | | | CH ₃ | -87.2 | 1.61 | 2.000 | | | 2.000 | | | ^a $\delta_{\rm H}$ (ppm) from TMS; $\delta_{\rm F}$ (ppm) from CCl₃F. the ¹H chemical shifts of methyl groups in halogenated propanes and ethanes may be expressed by the number of H, F and Cl atoms [n(H), n(F) and n(Cl)] in R as shown in Eqs. (1) and (2). Hence, for halogenated propanes: $$d_{\rm H}({\rm CH_3}) = 0.535n({\rm H}) + 0.587n({\rm F}) + 0.672n({\rm Cl}) \tag{1}$$ and for halogenated ethanes $$d_{\rm H}({\rm CH_3}) = 0.302n({\rm H}) + 0.637n({\rm F}) + 0.902n({\rm Cl})$$ (2) The relationships between the observed and calculated ¹H chemical shifts are listed in Table 3. These results agree with those obtained by us for the CF₃–CF₂–R system and we presume that the order of the coefficient is related to the bulkiness of the atom. It is generally known that ¹H chemical shifts are affected by the electronegativity, steric effects or magnetic anisotropic effects of the substituent. In these halogenated propanes and ethanes, the ¹H chemical shifts are mainly affected by the steric factor associated with the terminal substituent R. Let us now compare the ¹⁹F chemical shift with the ¹H chemical shift in halogenated propanes. The left-hand column of Table 4 lists the ¹⁹F chemical shifts of the trifluoromethyl group and the ¹H chemical shifts of the methyl group in halogenated propanes. Bulkier substituents tend to lead to larger value shifts for the substituted methyl group in halogenated propanes. A plot of the ¹⁹F chemical shifts of the trifluoromethyl group versus the ¹H chemical shifts of the methyl group in halogenated propanes gives an approximately linear relationship (Fig. 1). This indicates that both the ¹⁹F and the ¹H chemical shifts are affected by the same factor, presumably one of steric origin. We have applied conformational analysis using MNDO calculations to elucidate the steric interaction in the molecules. The heats of formation of all rotamers of CF₃CF₂-CXYZ and CH₃CF₂-CXYZ (X, Y, Z=H, Cl, F) were calculated in order to estimate the rotamer population as described previously [2]. Then the average number of atoms Fig. 1. Correlation between ^{19}F chemical shifts of CF_3 in CF_3CF_2 -R and 1H chemical shifts of CH_3 in CH_3CF_2 -R. ^b Measured in the gaseous state. See Ref. [3]. ^b Measured in the gaseous state. See Ref. [3]. Fig. 2. Top and side view of CF₃-CF₂-CXYZ and CH₃-CF₂-CXYZ. Table 5 19F chemical shifts of CF₂Cl and CFCl₂ groups and ¹H chemical shifts of CH₂Cl and CHCl₂ groups in halogenated propanes ^a | R ² | CX ₂ Cl-CF ₂ -I | \mathbb{R}^2 | CXCl ₂ -CF ₂ -R ² | | | |--------------------|---------------------------------------|-------------------------------------|--|-------------------------------------|--| | | $\delta_{\rm F}$ (CF ₂ Cl) | δ _H (CH ₂ Cl) | δ_{F} (CFCl ₂) | δ _H (CHCl ₂) | | | CCl ₃ | -61.3 | 4.30 | -63.9 | 6.47 | | | CCl ₂ F | -64.6 | 4.08 | -66.7 | 6.25 | | | CHCl ₂ | -66.3 | | -66.4 | 6.24 | | | CCIF ₂ | -67.7 | 3.94 | - 70.9 | 6.04 | | | CHCIF | -69.1 | 3.91 | -71.4 | 6.00 | | | CF ₃ | 70.0 | 3.88 | -73.1 | 5.93 | | | CH ₂ Cl | -70.4 | 3.79 | -72.1 | _ | | | CHF ₂ | -70.3 | 3.82 | -73.4 | 5.90 | | | CH ₂ F | -71.0 | 3.80 | _ | 5.92 | | | CH ₃ | −72.5 | 3.66 | −73.5 | 5.77 | | | r | 0.986 | | 0.978 | | | ^a $\delta_{\rm H}$ (ppm) from TMS; $\delta_{\rm F}$ (ppm) from CCl₃F. Fig. 3. Correlation between ¹⁹F chemical shifts of CF₂Cl in CF₂ClCF₂-R and ¹H chemical shifts of CH₂Cl in CH₂ClCF₂-R. in the X and Y positions depicted in Fig. 2 was calculated as listed in Table 4. The right-hand column of Table 4 shows that the greater the number of large atoms located in the X and Y positions in Fig. 2, the larger the magnitude of the chemical shift. If large substituent atoms are located in the X and Y positions, they would have a through-space interaction with the other terminal substituent; this is known as the anisotropic and steric effect [8]. Table 5 lists the ¹⁹F chemical shifts of chlorodifluoromethyl and dichlorofluoromethyl groups and the ¹H chemical shifts of chloromethyl and dichloromethyl groups in halogenated propanes and their relationships. An approximately linear relationship (Figs. 3 and 4) also exists between these ¹⁹F and ¹H chemical shifts. A similar observation applies to the ¹H NMR chemical shifts of the methyl groups and the H atom of the 10-position in the 1,2,3,4-halogenated methyltriptycene (Fig. 5) system Fig. 4. Correlation between ¹⁹F chemical shifts of CFCl₂ in CFCl₂CF₂-R and ¹H chemical shifts of CHCl₂ in CHCl₂CF₂-R. Fig. 5. 1,2,3,4-Halogenated 9-methyltriptycene. Table 6 ^{1}H chemical shifts $^{\text{a}}$ of CH $_{3}$ and 10-H in 1,2,3,4-halogenated methyltriptycene | x | СН₃ | 10-Н | |--------|------|------| | H [4] | 2.36 | 5.38 | | F [5] | 2.56 | 5.77 | | CI [6] | 2.73 | 6.03 | | Br [7] | 2.75 | 6.10 | [6-8]. As indicated by the data in Table 6, ${}^{1}H$ chemical shifts of the methyl group and the H atom at the 10-position are shifted to larger values in the order of X = H, F, Cl, Br, which is the same as the order of ionic radii. The through-space interaction, therefore, is responsible for the larger values of the ¹⁹F and ¹H NMR chemical shifts of the substituted methyl group in halogenated propanes. ## 3. Experimental details ### 3.1. Spectral data The ¹⁹F and ¹H NMR chemical shift data for halogenated propanes and halogenated ethanes containing the trifluoromethyl group were extracted from a previous paper [2]. All the halogenated ethanes listed in Tables 1 and 2 were obtained commercially (PCR Inc.) except for 1-chloro-1-fluoroethane. Some of the chemical shift data for halogenated ethanes have already been quoted in the literature [9,10], but there are some gaps due to changes in the experimental conditions such as the solvent or concentration so we have remeasured the NMR spectra under the same conditions. The NMR spectra were obtained in the pulse Fourier transform mode using a JNM-EX-90 (JEOL) instrument operating at 84.2 MHz (19F) and 89.5 MHz (1H) respectively. The spectral data were recorded in CDCl₃ solution (0.05-0.2 M) with CCl₃F (¹⁹F) and TMS (¹H) as internal references. Chemical shifts are given in parts per million (ppm) from CCl₃F (¹⁹F) and TMS (¹H). Mass spectra were recorded on a gas chromatograph/mass spectrometer (M-80B, Hitachi, Ltd.). ### 3.2. Calculations MNDO calculations were performed on a Titan 3000 computer with full geometry optimization using a MOPAC 5.0 program [11–13]. ## 3.3. Purification and identification of products The reaction mixture was distilled to obtain pure products, then separated and collected by gas chromatographic methods (Silicone KF-96, GL Sciences). Identification of products was effected by ¹⁹F and ¹H NMR spectroscopy, and mass spectrometry. ## 3.3.1. Preparation of 1-chloro-1-fluoroethane A 0.5 in i.d. and 24 in long Inconel tube reactor was charged with 100 ml of Pt/C (granules, Pt-0.5%) catalyst and heated at 200 °C. 1,1-Dichloro-1-fluoroethane and hydrogen were fed in at rates of 75 and 225 ml min⁻¹, respectively. The reactant gas was passed through aqueous alkali (Na₂CO₃) solution and trapped in a Dry Ice/acetone bath. The products were distilled to give several products as follows: 1-chloro-1-fluoroethane (31%), 1-fluoroethane (45%), 1-chloroethane (21%), others (3%). # 3.3.2. Spectral data 1,1,1-Trichloroethane: ¹H NMR δ: 2.73 (s) ppm. 1,1-Dichloro-1-fluoroethane: 19 F NMR δ : -44.7 (q, 3 J= 16.5 Hz) ppm. 1 H NMR δ : 2.46 (d, 3 J= 16.5 Hz) ppm. 1 -Chloro-1,1-difluoroethane: 19 F NMR δ : -45.7 (q, 3 J= 15.1 Hz) ppm. 1 H NMR δ : 2.16 (t, 3 J= 15.0 Hz) ppm. 1,1,1-Trifluoroethane: 19 F NMR δ : -61.2 (q, 3 J= 13.1 Hz) ppm. ¹H NMR δ: 1.87 (q, ${}^{3}J$ = 12.8 Hz) ppm. 1,1-Dichloroethane: ¹H NMR δ: 2.06 (d, ${}^{3}J$ = 6.0 Hz); 5.90 (q, ${}^{3}J$ = 6.0 Hz) ppm. 1-Chloro-1-fluoroethane: ¹⁹F NMR δ : -124.1 (dq, ${}^2J = 51.0, {}^3J = 21.3 \text{ Hz}$) ppm. ¹H NMR δ : 1.86 (dd, ${}^3J = 21.2, {}^3J = 5.4 \text{ Hz}$); 6.29 (dq, ${}^2J = 50.9, {}^3J = 5.3 \text{ Hz}$) ppm. MS m/e: 47 (CH₃CHF⁺); 27 (CH₃C⁺); 67 (CHClF⁺); 82 (M⁺). 1,1-Difluoroethane: ¹⁹F NMR δ : -110.0 (dq, ²J=56.8, ³J=21.0 Hz) ppm. ¹H NMR δ : 1.55 (td, ³J=20.8, ³J=4.5 Hz); 5.93 (dq, ²J=56.9, ³J=4.5 Hz) ppm. 1-Chloroethane: ¹H NMR δ : 1.48 (t, ³J = 7.3 Hz); 3.56 (q, ³J = 7.3 Hz) ppm. 1-Fluoroethane: ¹⁹F NMR δ : -212.2 (tq, ²J=47.0, ³J=26.0 Hz) ppm. ¹H NMR δ : 1.35 (dt, ³J=26.2, ³J=7.0 Hz); 4.50 (dq, ²J=47.0, ³J=6.9 Hz) ppm. #### References - T. Tanuma, K. Ohnishi, H. Okamoto, T. Miyajima and S. Morikawa, Rep. Res. Lab. Asahi Glass Co. Ltd., 41 (1991) 225. - [2] T. Tanuma, K. Ohnishi, H. Okamoto, T. Miyajima and S. Morikawa, J. Fluorine Chem., 57 (1992) 259. - [3] H. Spiesecke and W.G. Schneider, J. Chem. Phys., 35 (1961) 722. - [4] S.T. Cristol and D.K. Pennelle, J. Org. Chem., 35 (1970) 2357. - [5] G. Yamamoto and M. Oki, J. Org. Chem., 49 (1984) 1913. - [6] M. Nakamura and M. Oki, J. Am. Chem. Soc., 95 (1973) 7169. - [7] M. Nakamura, M. Oki, H. Nakanishi and O. Yamamoto, Bull. Chem. Soc. Jpn., 47 (1974) 2415. - [8] G. Yamamoto and M. Oki, Bull. Chem. Soc. Jpn., 63 (1990) 3550. - [9] C.H. Dungan and J.R. Van Wazer, Compilation of Reported 19 F NMR Chemical Shifts, Wiley, New York, 1990. - [10] F.J. Weigert, J. Fluorine Chem., 46 (1990) 375. - [11] M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99 (1977) 4899, 4907. - [12] M.J.S. Dewar, E.G. Zeobisch, E.F. Healy and J.J.P. Stewart, J. Am. Chem. Soc., 107 (1985) 3902. - [13] J.J.P. Stewart, J. Comp. Chem., 10 (1989) 209, 221.